• M17 MIR: A massive protostar with multiple accretion Outbursts

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We report the discovery of a massive protostar M17~MIR embedded in a hot molecular core in M17. The multiwavelength data obtained during 1993--2019 show significant mid-IR (MIR) variations, which can be split into three stages: the decreasing phase during 1993.03--mid-2004, the quiescent phase from mid-2004 to mid-2010, and the rebrightening phase from mid-2010 until now. The variation of the 22\,GHz H$_2$O maser emission, together with the MIR variation, indicates an enhanced disk accretion rate onto M17~MIR during the decreasing and rebrightening phases. Radiative transfer modeling of the spectral energy distributions of M17~MIR in the 2005 epoch (quiescent) and 2017 epoch (accretion outburst) constrains the basic stellar parameters of M17~MIR, which is an intermediate-mass protostar (M~5.4 Msun) with accretion rate ~1.1x10^-5 Msun in the 2005 epoch and ~1.7x10^-3 Msun/yr in the 2017 epoch. The enhanced accretion rate during outburst induces the luminosity outburst $\Delta L\approx7600 $Lsun. In the accretion outburst, a larger stellar radius is required to produce accretion rate consistent with the value estimated from the kinematics of water masers. M17 MIR shows two accretion outbursts ($\Delta t\sim 9-20$ yr) with outburst magnitudes of 2 mag, separated by a 6 yr quiescent phase. The accretion outbusrt occupies 83\% of the time over 26 yr. The accretion rate in outburst is variable with amplitude much lower than the contrast between quiescent and outburst phases. The extreme youth of M17 MIR suggests that minor accretion bursts are frequent in the earliest stages of massive star formation.

  • Census of Variable Stars toward Serpens Main

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We have monitored a 3 deg2 area toward Serpens Main in the Pan-STARRS1 r, i, and z bands from 2016 April to September. Light curves of more than 11,000 stars in each band were obtained, and 143 variables have been identified. Among those, 119 variables are new discoveries, while 24 variables were previously known. We present variability classes and periods of 99 stars. Of these, 81 are located in the upper giant branch, displaying long periods, while the remaining 18 variables are pre-main-sequence objects with short periods. We also identify eight eclipsing binary systems, including the known binary V0623 Ser, and derive their physical parameters. According to a clustering analysis of Gaia DR2 stars in the observed field, there are 10 variable members in Serpens Main, where six members have been classified as young stellar objects in previous studies. Here we provide color-magnitude and color-color diagrams for these variables. The color variability of most variables in the color-magnitude diagrams produce the expected displacements, while the movements of cluster members point in different directions; this behavior may be associated with accretion spots or circumstellar disks.

  • 大质量原恒星M17 MIR的多重吸积爆发过程

    分类: 天文学 >> 恒星和银河系 提交时间: 2022-04-20

    摘要: We report the discovery of a massive protostar M17~MIR embedded in a hot molecular core in M17. The multiwavelength data obtained during 1993--2019 show significant mid-IR (MIR) variations, which can be split into three stages: the decreasing phase during 1993.03--mid-2004, the quiescent phase from mid-2004 to mid-2010, and the rebrightening phase from mid-2010 until now. The variation of the 22\,GHz H2O maser emission, together with the MIR variation, indicates an enhanced disk accretion rate onto M17~MIR during the decreasing and rebrightening phases. Radiative transfer modeling of the spectral energy distributions of M17~MIR in the 2005 epoch (quiescent) and 2017 epoch (accretion outburst) constrains the basic stellar parameters of M17~MIR, which is an intermediate-mass protostar (M~5.4 Msun) with accretion rate ~1.1x10^-5 Msun in the 2005 epoch and ~1.7x10^-3 Msun/yr in the 2017 epoch. The enhanced accretion rate during outburst induces the luminosity outburst L7600Lsun. In the accretion outburst, a larger stellar radius is required to produce accretion rate consistent with the value estimated from the kinematics of water masers. M17 MIR shows two accretion outbursts (t920 yr) with outburst magnitudes of 2 mag, separated by a 6 yr quiescent phase. The accretion outbusrt occupies 83\% of the time over 26 yr. The accretion rate in outburst is variable with amplitude much lower than the contrast between quiescent and outburst phases. The extreme youth of M17 MIR suggests that minor accretion bursts are frequent in the earliest stages of massive star formation.